VARISCITE LTD. # VAR-SOM-SOLO/DUAL v1.X Datasheet Freescale i.MX6TM - based System-on-Module #### VARISCITE LTD. # VAR-SOM-SOLO/DUAL Datasheet #### © 2014 Variscite Ltd. All Rights Reserved. No part of this document may be photocopied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means whether, electronic, mechanical, or otherwise without the prior written permission of Variscite Ltd. No warranty of accuracy is given concerning the contents of the information contained in this publication. To the extent permitted by law no liability (including liability to any person by reason of negligence) will be accepted by Variscite Ltd., its subsidiaries or employees for any direct or indirect loss or damage caused by omissions from or inaccuracies in this document. Variscite Ltd. reserves the right to change details in this publication without notice. Product and company names herein may be the trademarks of their respective owners. Variscite Ltd. 4 Hamelacha Street Lod P.O.B 1121 Airport City, 70100 ISRAEL Tel: +972 (9) 9562910 Fax: +972 (9) 9589477 # **Document Revision History** | Revision | Date | Notes | |----------|------------|---| | 1.0 | 09/9/2014 | Initial | | 1.01 | 25/12/2014 | Section 3.2 – Updated: pins 16, 94, removed pin 70
Section 8 - Updated
Section 9 - Updated | | 1.02 | 02/06/2015 | Updated -MIPI CSI-2 supporting 2 lanes
Section 3.1 - Pins 127,129,131,133 N.C.
Section 4.3.1 - Pins 127,129,131,133 Removed | | 1.03 | 07/07/2015 | Section 4.3.2 - Removed CSI1 Table | | 1.04 | 11/01/2016 | Section 3.1 - Updated Note [2] Section 4.10 - Corrected UART number, updated note Section 4.14 - Updated note | | 1.05 | 06/06/2016 | Section 4.12 – Corrected ECSPI pinmux tables Section 3.1 – Corrected pin names pins 72,94 | | 1.06 | 14/09/2016 | Section 4.8 – Updated Interface features Section 6.2 – Updated CPU Usage, Additional Peripherals | | 1.07 | 02/02/2017 | Section 4.8 – Updated interface features | | 1.08 | 26/06/2017 | Section 3.1, 4.16 – Added notes on POR_B signal | | 1.09 | 02/11/2017 | Section 1.2, 2.5, 4.5 – Updated Bluetooth features | | 1.10 | 21/12/2017 | Section 3.1, 4.10 – Updated UART features, notes, pinmux tables | | 1.11 | 22/01/2018 | Section 3.2 – Updated pins 42,60 68-73 | | 1.12 | 25/07/2018 | Section 8 – Updated Reliability prediction data | | 1.13 | 31/10/2018 | Section 3.2 – Updated pins 71-73 | | 1.14 | 20/11/2018 | Section 3.1 – Added note [5] Section 3.2 – corrected typos, added alt modes 8,9 | | 1.15 | 30/08/2020 | Section 4.9 – Renamed table heading from "AUDMUX4 Signals" to "Analog Signals" | | 1.16 | 20/10/2020 | Section 1.3 – Updated Block Diagram | | 1.17 | 20/03/2022 | Added Ethernet PHY ADIN1300 – Updated section 2.3 | | 1.18 | 02/05/2022 | Section 8 – Updated table | | 1.19 | 17/05/2022 | Sections: 1.2,2.5,4.5 – Updated the BT | | 1.20 | 27/02/2023 | Section 8 – Updated table Sections 1.2, 2.2 – Updated the eMMC | | Do | cument | Revision History | 3 | |----|--|---|--| | 1. | Overvi | ew | 5 | | | 1.1.
1.2.
1.3.
1.4. | General Information | 6
7 | | 2. | Main H | Hardware Components | 8 | | | 2.1.2.2.2.3.2.4.2.5. | Freescale i.MX6 Memory 10/100/1000 Mbps Ethernet Transceiver TLV320AIC3106 Audio Wi-Fi + BT | 12
13
14
14 | | 3. | | al Connectors | | | | | VAR-SOM-SOLO/DUAL Connector Pin-out | | | | 3.2. | SO-DIMM 200 Pin Mux | | | 4. | SOM's | interfaces | 25 | | | 4.13.
4.14.
4.15. | Display Interfaces Touch Panel Camera Interfaces Gigabit Ethernet Wi-Fi & Bluetooth USB Host 2.0 USB 2.0 OTG MMC/SD/SDIO Audio UART Interfaces Flexible Controller Area Network (FLEXCAN) SPI PCIe I ² C General Purpose IOs | 27
27
30
30
31
31
32
33
35
35
37
37 | | | | General System Control | | | 5. | Absolu | ite Maximum Characteristics | 40 | | 6. | Operat | tional Characteristics | 40 | | | 6.1.
6.2. | Power supplies Power Consumption | | | 7. | DC Ele | ctrical Characteristics | 40 | | 8. | Enviro | nmental Specifications | 41 | | | | nical Drawings | | | | | Notice | | | | _ | nty Terms | | | | | | | | 17 | Contac | t Information | 44 | # 1. Overview ### 1.1. General Information The VAR-SOM-SOLO/DUAL is a high performance System-on-Module. It provides an ideal building block that easily integrates with a wide range of target markets requiring rich multimedia functionality, powerful graphics and video capabilities, as well as high-processing power. Compact, cost effective and with low power consumption, VAR-SOM-SOLO/DUAL secures an Intel Atom performance level. #### Supporting products: - VAR-SOLOCustomBoard evaluation board - ✓ Carrier -Board, compatible with VAR-SOM-SOLO/DUAL - ✓ Schematics - CSI2 Camera module - O.S support - ✓ Linux BSP - ✓ Windows Embedded Compact 7 - ✓ Android Contact Variscite support services for further information: mailto:support@variscite.com. ## 1.2. Feature Summary - Freescale i.MX6 series SoC Single/Dual ARM® Cortex™-A9 Core 1.0 Ghz - Up to 1GB DDR3 RAM - Up to 512MB NAND Flash for storage memory / boot - Up to 128GB eMMC storage - 2 x LVDS display interface - HDMI V1.4 interface - 1 x MIPI DSI - Touch panel interface - Parallel & serial camera interface - On-board 10/100/1000 Mbps Ethernet PHY - TI WiLink8 2.4/5GHz WLAN (802.11 a/b/g/n) / BT-BLE 5.1with CSA2 support and optional MIMO - 1 x USB 2.0 host, 1 x OTG - 1 x SD/MMC - Serial interfaces (SPI, I2C, UART, I2S,) - CAN Bus - Stereo line-In / headphones out - Digital microphone - Single 3.3 V power supply - 67mm x 33mm, 200 pin SO-DIMM Connector # 1.3. Block Diagram ### 1.4. VAR-SOM-SOLO/DUAL V1.X vs VAR-SOM-MX6 V2.X - a) 40 Pin header removed - b) No SATA (i.MX6 solo/DualLite) - c) Pin-out changes on the 200 pin SODIMM connector: | Pin # | VAR-SOM-MX6 V2.X | VAR-SOM-SOLO/DUAL V1.X | |-------|---------------------|------------------------| | | VCC_RTC | N.C. | | | GPIO2_14 Ball B20 | JTAG_TRSTB C2 | | | SATA_RXN Ball A14 | JTAG_TDI Ball G5 | | | SATA_RXP Ball B14 | JTAG_TDO Ball G6 | | 97 | SATA_TXP Ball A12 | JTAG_TCK Ball H5 | | 99 | SATA_TXN Ball B12 | JTAG_TMS Ball C3 | # 2. Main Hardware Components This section summarizes the main hardware building blocks of the VAR-SOM-SOLO/DUAL #### 2.1. Freescale i.MX6 #### 2.1.1. Overview The i.MX6 Solo/DualLite processor represent Freescale Semiconductor's latest achievement in integrated multimedia applications processors, optimized for lowest power consumption. The processor feature Freescale's advanced implementation of ARM™ Cortex-A9 core, which operates at speeds of up to 1 GHz. It includes 2D and 3D graphics processors, 3D 1080p video processing and integrated power management. DDR3-800bps memory interface and a number of other interfaces such as WLAN, Bluetooth™, GPS, hard drive, displays, and camera sensors. #### 2.1.2. CPU Platform The i.MX6 Application Processor (AP) is based on the ARM Cortex-A9 MPCore™ Platform, which has the following features: - ARM Cortex A9 (with TrustZone) - Symmetric CPU configuration where each CPU includes: - 32 Kbyte L1 Instruction Cache - 32 Kbyte L1 Data Cache - Private Timer and Watchdog - Cortex-A9 NEON MPE (Media Processing Engine) Co-processor. - The ARM Cortex A9 Core[™] complex includes: - General Interrupt Controller (GIC) with 128 interrupt support - Global Timer - Snoop Control Unit (SCU) - Two Master AXI (64-bit) bus interfaces output of L2 cache - NEON MPE coprocessor - SIMD Media Processing Architecture - NEON register file with 32x64-bit general-purpose registers - NEON Integer execute pipeline (ALU, Shift, MAC) - NEON dual, single-precision floating point execute pipeline (FADD, FMUL) - NEON load/store and permute pipeline External - Supports single and double-precision add, subtract, multiply, divide, multiply and accumulate, and square root operations as described in the ARM VFPv3 architecture. - Provides conversions between 16-bit, 32-bit and 64-bit floating-point formats and ARM integer word formats. #### 2.1.3. Memory Interfaces The memory system consists of the following components: - Level 1 Cache—32 KB Instruction, 32 KB Data cache per core - Level 2 Cache—Unified instruction and data (1 MByte) - On-Chip Memory: - Boot ROM, including HAB (96 KB) - Internal multimedia / shared, fast access RAM (OCRAM, 256 KB) - Secure/non-secure RAM (16 KB) - External memory interfaces: - 32-bit DDR3-800 - 8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size, #### 2.1.4. DMA engine The SDMA is multi-channel flexible DMA engine. It helps in maximizing system performance by off-loading the various cores in dynamic data routing. It has the following features: - Powered by a 16-bit Instruction-Set micro-RISC engine - Multi-channel DMA supporting up to 32 time-division multiplexed DMA channels - 48 events with total flexibility to trigger any combination of channels - Memory accesses including linear, FIFO, and 2D addressing - Shared peripherals between ARM and SDMA - Very fast Context-Switching with 2-level priority based preemptive multi-tasking - DMA units with auto-flush and prefetch capability - Flexible address management for DMA transfers (increment, decrement, and no address changes on source and destination address) - DMA ports can handle unit-directional and bi-directional flows (copy mode) - Up to 8-word buffer for configurable burst transfers - Support of byte-swapping and CRC calculations - Library of Scripts and API is available
2.1.5. Display Subsystem The i.MX6 Solo/DualLite video graphics subsystem consists of the following dedicated modules: - Video Processing Unit (VPU): a multi-standard high performance video/image CODEC - Three Graphics Processing Units (GPUs): - 3D GPU: accelerating the generation of 3D graphics (OpenGL/ES) and vector graphics (OpenVG) - 2D GPU: acceleration the generation of 2D graphics (BitBLT). - OpenVG: acceleration of vector graphics (OpenVG). - Display interface bridges: providing optional translation from the digital display interface supported by the IPU to other interfaces: - LVDS bridge (LDB): providing up to two LVDS interfaces - HDMI transmitter - MIPI/DSI transmitter - MIPI/CSI-2 receiver - Two (identical) Display Content Integrity Checker (DCIC) are used to authenticate sensitive displayed data. - A Video Data Order Adapter (VDOA): used to re-order video data from the "tiled" order used by the VPU to the conventional raster-scan order needed by the IPU. #### 2.1.6. MIPI - Camera Serial Interface Host Controller The MIPI CSI-2 Host Controller supports the following features: - Compliant with MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2), Version 1.00 29 November 2005 - Optional support for Camera Control Interface (CCI) through the use of DesignWare Core (DW apb i2c) - Interface with MIPI D-PHY following PHY Protocol Interface (PPI), as defined in MIPI Alliance Specification for D-PHY, Version 1.00.00 - 14 May 2009 - Supports up to 2 D-PHY Rx Data Lanes - Dynamically configurable multi-lane merging - · Long and Short packet decoding - Timing accurate signaling of Frame and Line synchronization packets; Support for several frame formats such as: - General Frame or Digital Interlaced Video with or without accurate sync timing - Data type (Packet or Frame level) and Virtual Channel interleaving - 32-bit Image Data Interface delivering data formatted as recommended in CSI-2 Specification - Supports all primary and secondary data formats: - RGB, YUV and RAW color space definitions - From 24-bit down to 6-bit per pixel - Generic or user-defined byte-based data types - Error detection and correction - PHY level - Packet level - Line level - Frame level ### 2.1.7. 2D and 3D Graphics Processing Unit (GPU) The GPU2D module has two independent sub-modules: R2D and V2D GPUs. Both GPU were designed to display on a variety of consumer devices. Addressable screen sizes range from small displays featured on cell phones to large 1080p high definition displays. The GPU2D cores provide powerful graphics at low power consumption, utilizing the smallest silicon footprints. Dynamic power consumption is minimized by extensive use of localized clock gating. Hardware acceleration is brought to numerous 2D and VG applications including graphical user interfaces (GUI), menu displays, flash animation and gaming. The GPU3D is a high-performance core that delivers hardware acceleration for 3D graphics display. Addressable screen sizes range from the smallest cell phones to HD 1080p displays. It provides high performance, high quality graphics, low power consumption and the smallest silicon footprint. GPU3D accelerates numerous 3D graphics applications, including Graphical User Interfaces (GUI), menu displays, flash animation, and gaming. This module supports the following graphics APIs: - OpenGL ES 2.0 - OpenGL ES 1.1 #### 2.1.8. Audio Back End The AUDMUX provides flexible, programmable routing of the serial interfaces (SSI1 or SSI2) to and from off-chip devices. The AUDMUX routes audio data (and even splices together multiple time-multiplexed audio streams) but does not decode or process audio data itself. The AUDMUX is controlled by the ARM but can route data even when the ARM is in a low-power mode. The ESAI (Enhanced Serial Audio Interface) provides a full-duplex serial port for serial communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and other processors. The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. The ESAI is connected to the IOMUX and to the ESAI BIFIFO module. The ESAI_BIFIFO (ESAI Bus Interface and FIFO) is the interface between the ESAI module and the shared peripheral bus. It contains the FIFOs used to buffer data to and from the ESAI, as well as providing the data word alignment and padding necessary to match the 24-bit data bus of the ESAI to the 32-bit data bus of the shared peripheral bus. The SPDIF (Sony/Philips Digital Interface) audio module is a stereo transceiver that allows the processor to receive and transmit digital audio over it. The SPDIF receiver section includes a frequency measurement block that allows the precise measurement of incoming sampling frequency. A recovered clock is provided by the SPDIF receiver section and may be used to drive both internal and external components in the system. The SPDIF is connected to the shared peripheral bus. The ASRC (Asynchronous Sample Rate Converter) converts the sampling rate of a signal associated to an input clock into a signal associated to a different output clock. The ASRC supports concurrent sample rate conversions of up to 10 channels of over 120dB THD+N. The sample rate conversion of each channel is associated to a pair of incoming and outgoing sampling rates. The ASRC supports up to three sampling rate pairs. The ASRC is connected to the shared peripheral bus. #### 2.1.9. 10/100/1000 Ethernet Controller The MAC-NET core, in conjunction with a 10/100/1000 MAC, implements layer 3 network acceleration functions. These functions are designed to accelerate the processing of various common networking protocols, such as IP, TCP, UDP and ICMP, providing wire speed services to client applications. The MAC operation is fully programmable and can be used in NIC (Network Interface Card), bridging, or switching applications. The core implements the remote network monitoring (RMON) counters according to IETF RFC 2819. The core also implements a hardware acceleration block to optimize the performance of network controllers providing IP and TCP, UDP, ICMP protocol services. The acceleration block performs critical functions in hardware, which are typically implemented with large software overhead. The core implements programmable embedded FIFOs that can provide buffering on the receive path for loss-less flow control .Advanced power management features are available with magic packet detection and programmable power-down modes. ### 2.2. Memory #### 2.2.1. RAM The VAR-SOM-SOLO/DUAL is available with up to 1GB of DDR3 memory. #### 2.2.2. Non-volatile Storage Memory - NAND flash: The VAR-SOM-SOLO/DUAL is available with up to 0.5GB of SLC NAND FLASH memory. The NAND flash is used for Flash Disk purposes, O.S. run-time-image and the Boot-loader (Boot from NAND). - eMMC: Up to 128GB of storage. Boot from eMMC is not possible, therefore minimal NAND-flash of 128MB is required. ### 2.3. 10/100/1000 Mbps Ethernet Transceiver The VAR-SOM-SOLO/DUAL can be ordered with an Integrated Ethernet Transceiver, Micrel KSZ9031 or Analog Devices ADIN1300. Please contact sales@variscite.com for inquiries about P/N assembled on your SOM. #### 2.3.1. Micrel KSZ9031 Ethernet Transceiver The KSZ9031RN is a completely integrated triple speed (10Base-T/100Base-TX/1000Base-T) Ethernet Physical Layer Transceiver for transmission and reception of data over standard CAT-5 unshielded twisted pair (UTP) cable. The KSZ9031RN provides the Reduced Gigabit Media Independent Interface (RGMII) for direct connection to RGMII MACs in Gigabit Ethernet processors and switches for data transfer at 10/100/1000 Mbps speed. #### 2.3.2. Analog Devices ADIN1300 Ethernet Transceiver #### Key features include: - 10BASE-Te/100BASE-TX/1000BASE-T IEEE® 802.3™ compliant MII, RMII, and RGMII MAC interfaces - EEE in accordance with IEEE 802.3az - Start of packet detection for IEEE 1588 time stamp support - Enhanced link detection - Configurable LED - Integrated power supply monitoring and POR - MII management interface (MDIO) compatible with the IEEE 802.3 Standard Clause 22 and Clause 45 management frame structures. - Supports cable lengths up to 150 meters at Gigabit speeds and 180 meters when operating at 100 Mbps or 10 Mbps. - Automatic MDI/MDIX crossover - Autonegotiation capability in accordance with IEE 802.3 Clause 28 - Supports a number of power-down modes: hardware, software, and energy detect power-down, and EEE LPI mode - On-chip cable diagnostics capabilities - Transmit drivers are voltage mode with on-chip terminations #### 2.4. TLV320AIC3106 Audio The Texas Instrument's TLV320AlC3106 is a low-power, highly integrated stereo audio codec with stereo headphone amplifier, as well as multiple inputs and outputs programmable in single-ended or fully differential configurations. Extensive register-based power control is included, enabling stereo 48-kHz DAC playback as low as 15mW. The VAR-SOM-SOLO/DUAL exposes the following interface of the TLV320AlC3106: - Headphone - Line-in - Digital microphone #### 2.5. Wi-Fi + BT The VAR-SOM-SOLO/DUAL contains TI's WL183xMOD WiLink, a high performance 2.4/5 GHz IEEE 802.11 a/b/g/n Bluetooth 5.1/BLE with CSA2 support radio module, with optional Dual Band and MIMO support. The modules support improved performance over WiFi in bit rates reaching 100Mbps (UDP) and 80Mbps (TCP). The module realizes the necessary PHY/MAC layers to support WLAN applications in conjunction with a host processor over a SDIO interface. The module also provides a Bluetooth platform through the HCI transport layer. Both WLAN and Bluetooth share the same antenna port. - IEEE 802.11 b,g,n or Dual Band 2.4/5GHz 802.11 a/b/g/n with optional MIMO - Bluetooth 5.1/BLE with CSA2 support - U.FL connectors for external antennas - Integrated band-pass filter - Operating Temperature Range: Dual Band 2.4/5GHz Modules: -40 to +85 2.4GHz Modules: -20 to +70 # 3. External
Connectors The VAR-SOM-SOLO/DUAL exposes a 200-pin SO–DIMM mechanical standard interface. The recommended mating connector for baseboard interfacing are: - 1. CONCRAFT 0701A0BE52E - 2. Tyco Electronics -1565917-4 #### Pin#: Pin number on the SO-DIMM200 connector #### Pin Name: Default VAR-SOM-SOLO/DUAL pin name #### Type: Pin type & direction: - I − In - O Out - DS Differential Signal - A Analog - Power Power Pin #### Pin Group: Pin functionality group #### i.MX6 Ball: Ball number #### Mode (Tables 3.2 & 3.4): Pin mux mode option # 3.1. VAR-SOM-SOLO/DUAL Connector Pin-out | Pin # | Pin Name | Туре | Pin Group | GPIO | i.MX6 Ball | |-------|--------------|-------|-------------------------------------|-----------|------------| | 1 | GND | POWER | Digital GND | | | | 2 | GND | POWER | Digital GND | | | | 3 | MDI_A+ | DS | Gigabit Ethernet | | | | 4 | MDI_C+ | DS | Gigabit Ethernet | | | | 5 | MDI_A- | DS | Gigabit Ethernet | | | | 6 | MDI_C- | DS | Gigabit Ethernet | | | | 7 | GND | POWER | Digital GND | | | | 8 | GND | POWER | Digital GND | | | | 9 | MDI_B+ | DS | Gigabit Ethernet | | | | 10 | MDI_D+ | DS | Gigabit Ethernet | | | | 11 | MDI_B- | DS | Gigabit Ethernet | | | | 12 | MDI_D- | DS | Gigabit Ethernet | | | | 13 | GND | POWER | Digital GND | | | | 14 | GND | POWER | Digital GND | | | | 15 | GETH_LED2 | 0 | Gigabit Ethernet LED | | | | 16 | GETH_LED1 | 0 | Gigabit Ethernet LED ^[5] | GPIO1[28] | V21 | | 17 | PWM0 | 10 | Pulse width modulation | GPIO4[30] | T25 | | 18 | DMIC_CLK | 0 | Digital microphone interface | | | | 19 | GND | POWER | Digital GND | | | | 20 | DMIC_DATA | I | Digital microphone interface | | | | 21 | AUDMUX4_RXD | 10 | Digital audio mux | GPIO5[17] | W24 | | 22 | AUDMUX4_RXC | 10 | Digital audio mux | GPIO5[13] | U23 | | 23 | AUDMUX4_RXFS | 10 | Digital audio mux | GPIO5[12] | V25 | | 24 | AUDMUX4_TXFS | 10 | Digital audio mux | GPIO5[16] | V24 | | 25 | AUDMUX4_TXC | 10 | Digital audio mux | GPIO5[14] | U22 | | 26 | AUDMUX4_TXD | 10 | Digital audio mux | GPIO5[15] | T20 | | 27 | GND | POWER | Digital GND | | | | 28 | GND | POWER | Digital GND | | | | 29 | CLKO2 | 0 | Reference clock out | GPIO1[3] | R7 | | 30 | NC | | Leave not connected | | | | 31 | GND | POWER | Digital GND | | | | 32 | VIN_3V3 | POWER | 3.3 V power supply IN | | | | 33 | GND | POWER | Digital GND | | | | 34 | VIN_3V3 | POWER | 3.3 V power supply IN | | | | 35 | GND | POWER | Digital GND | | | | 36 | VIN_3V3 | POWER | 3.3 V power supply IN | | | | 37 | GND | POWER | Digital GND | | | | 38 | VIN_3V3 | POWER | 3.3 V power supply IN | | | | Pin # | Pin Name | Туре | Pin Group | GPIO | i.MX6 Ball | |-------|------------|-------|---------------------------|-----------|------------| | 39 | CSPI1_CS0 | 10 | Configurable SPI | GPIO4[9] | U6 | | 40 | BOOT_SEL1 | 10 | EIM_DA05 | GPIO3[5] | L23 | | 41 | CSPI1_MISO | 10 | Configurable SPI | GPIO4[8] | U7 | | 42 | BOOT_SEL0 | 10 | EIM_DA7 | GPIO3[7] | L25 | | 43 | CSPI1_CLK | 10 | Configurable SPI | GPIO4[6] | W5 | | 44 | CAN1_TX | 10 | Controller area network | GPIO1[7] | R3 | | 45 | CSPI1_MOSI | 10 | Configurable SPI | GPIO4[7] | V6 | | 46 | CAN1_RX | 10 | Controller area network | GPIO1[8] | R5 | | 47 | GND | POWER | Digital GND | | | | 48 | CSPI1_CS1 | 10 | Configurable SPI | GPIO4[10] | W6 | | 49 | 3V3_PER | POWER | Power good indication | | | | 50* | UART2_CTS | 10 | UART2 port ^[2] | GPIO3[28] | G23 | | 51* | UART2_RTS | 10 | UART2 port ^[2] | GPIO3[29] | J19 | | 52 | UART2_TXD | 10 | UART2 port ^[2] | GPIO3[26] | E24 | | 53 | UART2_RXD | 10 | UART2 port ^[2] | GPIO3[27] | E25 | | 54 | UART3_RXD | 10 | UART3 port | GPIO3[25] | G22 | | 55 | UART3_CTS | 10 | UART3 port | GPIO3[23] | D25 | | 56 | UART3_TXD | 10 | UART3 port | GPIO3[24] | F22 | | 57 | UART3_RTS | 10 | UART3 port ^[3] | GPIO2[31] | F23 | | 58 | GND | POWER | Digital GND | | | | 59 | GND | POWER | Digital GND | | | | 60 | SD2_CLK | 10 | SD/MMC and SDXC | GPOP1[10] | C21 | | 61 | SD2_DATA2 | 10 | SD/MMC and SDXC | GPIO1[13] | A23 | | 62 | SD2_DATA0 | 10 | SD/MMC and SDXC | GPIO1[15] | A22 | | 63 | SD2_DATA1 | 10 | SD/MMC and SDXC | GPIO1[14] | E20 | | 64 | SD2_CMD | 0 | SD/MMC and SDXC | GPIO1[11] | F19 | | 65 | SD2_DATA3 | 10 | SD/MMC and SDXC | GPIO1[12] | B22 | | 66 | GND | POWER | Digital GND | | | | 67 | GND | POWER | Digital GND | | | | 68 | PWM1_OUT | Ю | General purpose | GPIO1[9] | T2 | | 69 | PWM3_OUT | 10 | General purpose | GPIO2[9] | B19 | | 70 | JTAG_TRSTB | | | | | | 71 | GPIO1_2 | 10 | General purpose | GPIO1[2] | T1 | | 72 | USB_OTG_ID | 10 | General purpose | GPIO1[1] | T4 | | 73 | GPIO2_11 | 10 | General purpose | GPIO2[11] | A20 | | 74 | NC | | Leave not connected | | | | 75 | SPDIFIN | 10 | SPDIF | GPIO3[21] | H20 | | 76 | GND | POWER | Digital GND | | | | 77 | SPDIFOUT | 10 | SPDIF | GPIO3[22] | E23 | | Pin # | Pin Name | Туре | Pin Group | GPIO | i.MX6 Ball | |-------|----------------|-------|-----------------------|-----------|------------| | 78 | GND | POWER | Digital GND | | | | 79 | USB_H1_OC | 10 | USB host | GPIO3[30] | J20 | | 80 | CAN2_TX_OTG_OC | 10 | FlexCAN-2 | GPIO4[14] | T6 | | 81 | CSIO_HSYNCH | 10 | Camera interface | GPIO5[19] | P4 | | 82 | CAN2_RX | 10 | FlexCAN-2 | GPIO4[15] | V5 | | 83 | UART1_RX | 10 | UART1 port | GPIO5[29] | M3 | | 84 | UART1_RTS | 10 | UART1 port | GPIO3[20] | G20 | | 85 | UART1_TX | 10 | UART1 port | GPIO5[28] | M1 | | 86 | UART1_CTS | 10 | UART1 port | GPIO3[19] | G21 | | 87 | I2C1_SDA | 10 | I2C interface | GPIO5[26] | N6 | | 88 | I2C1_SCL | 10 | I2C interface | GPIO5[27] | N5 | | 89 | GND | POWER | Digital GND | | | | 90 | I2C3_SDA | 10 | I2C interface | GPIO7[11] | R2 | | 91 | JTAG_TDI | | | | | | 92 | I2C3_SCL | 10 | I2C interface | GPIO1[5] | R4 | | 93 | JTAG_TDO | | | | | | 94 | GPIO1[4] | 10 | USB on-the-go | GPIO1[4] | R6 | | 95 | GND | POWER | Digital GND | | | | 96 | CSIO_DAT19 | 10 | Camera interface | GPIO6[5] | L6 | | 97 | JTAG_TCK | | | | | | 98 | POR_B | I | Reset ^[4] | | C11 | | 99 | JTAG_TMS | | | | | | 100 | CLK1_N | DS | PCIE clock | | C7 | | 101 | GND | POWER | Digital GND | | | | 102 | CLK1_P | DS | PCIE clock | | D7 | | 103 | VIN_3V3 | POWER | Main power supply | | G15 | | 104 | USB_H1_VBUS | I | USB 2.0 5V indication | | D10 | | 105 | VIN_3V3 | POWER | Main power supply | | G15 | | 106 | USB_OTG_VBUS | I | OTG 5V indication | | E9 | | 107 | VIN_3V3 | POWER | Main power supply | | G15 | | 108 | USB_HOST_DN | DS | USB host | | F10 | | 109 | VIN_3V3 | POWER | Main power supply | | G15 | | 110 | USB_HOST_DP | DS | USB host | | E10 | | 111 | VIN_3V3 | POWER | Main power supply | | G15 | | 112 | GND | POWER | Digital GND | | | | 113 | CSIO_DAT18 | 10 | Camera interface | GPIO6[4] | M6 | | 114 | USB_OTG_DN | DS | USB on-the-go | | В6 | | 115 | CSIO_DAT15 | 10 | Camera interface | GPIO6[1] | M5 | | 116 | USB_OTG_DP | DS | USB on-the-go | | A6 | | 117 | CSIO_DAT17 | Ю | Camera interface | GPIO6[3] | L3 | | Pin # | Pin Name | Туре | Pin Group | GPIO | i.MX6 Ball | |-------|--------------|-------|--------------------------|-----------|------------| | 118 | GND | POWER | Digital GND | | | | 119 | CSI_DOP | DS | Camera serial interface | | E3 | | 120 | CSI0_VSYNC | 10 | Camera interface | N2 | | | 121 | CSI_D0M | DS | Camera serial interface | | E4 | | 122 | CSIO_DATA_EN | 10 | Camera interface | GPIO5[20] | P3 | | 123 | CSI_D1M | DS | Camera serial interface | | D1 | | 124 | CSI0_DAT12 | 10 | Camera interface | GPIO5[30] | M2 | | 125 | CSI_D1P | DS | Camera serial interface | | D2 | | 126 | GND | POWER | Digital GND | | | | 127 | NC | | | | | | 128 | PCIE_TXM | DS | PCI express interface | | A3 | | 129 | NC | | | | | | 130 | PCIE_TXP | DS | PCI express interface | | B3 | | 131 | NC | | | | | | 132 | GND | POWER | Digital GND | | | | 133 | NC | | | | | | 134 | PCIE_RXP | DS | PCI express interface | | B2 | | 135 | CSI_CLK0P | DS | Camera serial interface | | F3 | | 136 | PCIE_RXM | DS | PCI express interface | | B1 | | 137 | CSI_CLK0M | DS | Camera serial interface | | F4 | | 138 | GND | POWER | Digital GND | | | | 139 | GND | POWER | Digital GND | | | | 140 | DSI_CLK0P | DS | Display serial interface | | H4 | | 141 | DSI_D0M | DS | Display serial Interface | | G2 | | 142 | DSI_CLK0M | DS | Display serial interface | | H3 | | 143 | DSI_D0P | DS | Display serial interface | | G1 | | 144 | GND | POWER | Digital GND | | | | 145 | DSI_D1M | DS | Display serial interface | | H2 | | 146 | HDMI_D1P | DS | HDMI | | J4 | | 147 | DSI_D1P | DS | Display serial interface | | H1 | | 148 | HDMI_D1M | DS | HDMI | | J3 | | 149 | GND | POWER | Digital GND | | | | 150 | HDMI_CLKM | DS | HDMI | | J5 | | 151 | HDMI_D2P | DS | HDMI | | K4 | | 152 | HDMI_CLKP | DS | HDMI | | J6 | | 153 | HDMI_D2M | DS | HDMI | | К3 | | 154 | HDMI_HPD | DS | HDMI | | K1 | | 155 | HDMI_D0P | DS | HDMI | | K6 | | 156 | HDMI_DDCCEC | 10 | HDMI | | K2 | | 157 | HDMI_D0M | DS | HDMI | | K5 | | Pin # | Pin Name | Туре | Pin Group | GPIO | i.MX6 Ball | |-------|-------------|-------|------------------------|-----------|------------| | 158 | GND | POWER | Digital GND | | | | 159 | GND | POWER | Digital GND | | | | 160 | LVDS0_TX1_N | DS | LVDS display bridge | | U4 | | 161 | LVDS0_TX0_N | DS | LVDS display bridge | | U2 | | 162 | LVDS0_TX1_P | DS | LVDS display bridge | | U3 | | 163 | LVDS0_TX0_P | DS | LVDS display bridge | | U1 | | 164 | LVDS0_TX2_N | DS | LVDS display bridge | | V2 | | 165 | LVDS0_TX3_N | DS | LVDS display bridge | | W2 | | 166 | LVDS0_TX2_P | DS | LVDS display bridge | | V1 | | 167 | LVDS0_TX3_P | DS | LVDS display bridge | | W1 | | 168 | LVDS0_CLK_N | DS | LVDS display bridge | | V4 | | 169 | GND | POWER | Digital GND | | | | 170 | LVDS0_CLK_P | DS | LVDS display bridge | | V3 | | 171 | CSIO_DAT14 | 10 | Camera interface | GPIO6[0] | M4 | | 172 | GND | POWER | Digital GND | | | | 173 | CSIO_DAT16 | 10 | Camera interface | GPIO6[2] | L4 | | 174 | I2C2_SCL | 10 | I2C interface [1] | | U5 | | 175 | CSIO_DAT13 | 10 | Camera interface | GPIO5[31] | L1 | | 176 |
I2C2_SDA | 10 | I2C interface [1] | | T7 | | 177 | CSIO_PIXCLK | I | Camera interface | GPIO5[18] | P1 | | 178 | GND | POWER | Digital GND | | | | 179 | GND | POWER | Digital GND | | | | 180 | LVDS1_CLK_N | DS | LVDS display bridge | | Y3 | | 181 | LVDS1_TX3_P | DS | LVDS display bridge | | AA4 | | 182 | LVDS1_CLK_P | DS | LVDS display bridge | | Y4 | | 183 | LVDS1_TX3_N | DS | LVDS display bridge | | AA3 | | 184 | LVDS1_TX0_N | DS | LVDS display bridge | | Y1 | | 185 | GND | POWER | Digital GND | | | | 186 | LVDS1_TX0_P | DS | LVDS display bridge | | Y2 | | 187 | TS_X- | Al | Touch screen interface | | | | 188 | LVDS1_TX1_N | DS | LVDS display bridge | | AA1 | | 189 | TS_X+ | Al | Touch screen interface | | | | 190 | LVDS1_TX1_P | DS | LVDS display bridge | | AA2 | | 191 | TS_Y+ | Al | Touch screen interface | | | | 192 | LVDS1_TX2_N | DS | LVDS display bridge | | AB1 | | 193 | TS_Y- | Al | Touch screen interface | | | | 194 | LVDS1_TX2_P | DS | LVDS display bridge | | AB2 | | 195 | AGND | POWER | Audio GND | | | | 196 | AGND | POWER | Audio GND | | | | 197 | LINEIN1_LP | Al | | | | | Pin# | Pin Name | Туре | Pin Group | GPIO | i.MX6 Ball | |------|------------|------|-----------|------|------------| | | | | | | | | 198 | HPLOUT | AO | | | | | 199 | LINEIN1_RP | Al | | | | | 200 | HPROUT | AO | | | | #### Notes: - [1] I2C2 Interface is used on-som. Pin mode can't be changed. - [2] UART2 interface is used for on SOM Bluetooth connectivity. Interface cannot be used if using Bluetooth. UART2 Pins marked with * are shared with WiFi/Bluetooth module. Pins can't be used and mode can't be altered if the WiFi/Bluetooth module is assembled. - [3] UART3 RTS pin is being latched at boot to determine boot sequence. Use with OE# buffer, and enable only after SOM is powered-up. Use reference schematics as example. - [4] A Delay should be added on POR_B to ensure POR_B is released after SOM voltage rails have stabilized. Use a voltage supervisor, see reference schematics. - [5] Pin is used for Ethernet PHY LED connection, can be used for other CPU alternate functions only if Ethernet PHY is not assembled. # 3.2. SO-DIMM 200 Pin Mux The table below summarizes the additional available functionality for each pin-in SO-DIMM 200 connector. | Pin | Ball | ALT0 MODE | ALT1 MODE | ALT2 MODE | ALT3 MODE | ALT4 MODE | ALT5 MODE | ALT6 MODE | ALT7 MODE | ALT8 MODE | ALT9 MODE | |-----|------|------------------------|---------------------------------|-----------------------|---------------------------------|------------------------|------------------|-----------------------------|------------------------------|------------------|----------------------| | 16 | V21 | | enet.ENET_TX_EN | esai.ESAI_TX3_RX2 | | | gpio1.GPIO1_IO28 | | | | i2c4.I2C4_SCL | | 17 | T25 | ipu1.IPU1_DISP0_DATA09 | lcd.LCD_DATA09 | pwm2.PWM2_OUT | wdog2.WDOG2_B | | gpio4.GPIO4_IO30 | | | | | | 21 | W24 | ipu1.IPU1_DISP0_DATA23 | lcd.LCD_DATA23 | ecspi1.ECSPI1_SS0 | audmux.AUD4_RXD | | gpio5.GPIO5_IO17 | | | | | | 22 | U23 | ipu1.IPU1_DISP0_DATA19 | lcd.LCD_DATA19 | ecspi2.ECSPI2_SCLK | audmux.AUD5_RXD | audmux.AUD4_RXC | gpio5.GPIO5_IO13 | | eim.EIM_CS3 | | | | 23 | V25 | ipu1.IPU1_DISP0_DATA18 | lcd.LCD_DATA18 | ecspi2.ECSPI2_SS0 | audmux.AUD5_TXFS | audmux.AUD4_RXFS | gpio5.GPIO5_IO12 | | eim.EIM_CS2 | | | | 24 | V24 | ipu1.IPU1_DISP0_DATA22 | lcd.LCD_DATA22 | ecspi1.ECSPI1_MISO | audmux.AUD4_TXFS | | gpio5.GPIO5_IO16 | | | | | | 25 | U22 | ipu1.IPU1_DISP0_DATA20 | lcd.LCD_DATA20 | ecspi1.ECSPI1_SCLK | audmux.AUD4_TXC | | gpio5.GPIO5_IO14 | | | | | | 26 | T20 | ipu1.IPU1_DISP0_DATA21 | lcd.LCD_DATA21 | ecspi1.ECSPI1_MOSI | audmux.AUD4_TXD | | gpio5.GPIO5_IO15 | | | | | | 29 | R7 | esai.ESAI_RX_HF_CLK | | i2c3.I2C3_SCL | xtalosc.
XTALOSC_REF_CLK_24M | ccm.CCM_CLKO2 | gpio1.GPIO1_IO03 | usb.USB_H1_OC | mlb.MLB_CLK | | | | 39 | U6 | ecspi1.ECSPI1_SS0 | enet.ENET_COL | audmux.AUD5_RXD | kpp.KEY_ROW1 | uart5.UART5_RX_DATA | gpio4.GPIO4_IO09 | usdhc2.SD2_VSELECT | | | | | 40 | L23 | eim.EIM_AD05 | ipu1.IPU1_DISP1_DATA04 | ipu1.IPU1_CSI1_DATA04 | | | gpio3.GPIO3_IO05 | | src.SRC_BOOT_CFG05 | epdc.EPDC_SDCE1 | | | 41 | U7 | ecspi1.ECSPI1_MISO | enet.ENET_MDIO | audmux.AUD5_TXFS | kpp.KEY_COL1 | uart5.UART5_TX_DATA | gpio4.GPIO4_IO08 | usdhc1.SD1_VSELECT | | | | | 42 | L25 | eim.EIM_AD07 | ipu1.IPU1_DISP1_DATA02 | ipu1.IPU1_CSI1_DATA02 | | | gpio3.GPIO3_IO07 | | src.SRC_BOOT_CFG07 | epdc.EPDC_SDCE3 | | | 43 | W5 | ecspi1.ECSPI1_SCLK | enet.ENET_RX_DATA3 | audmux.AUD5_TXC | kpp.KEY_COL0 | uart4.UART4_TX_DATA | gpio4.GPIO4_IO06 | dcic1.DCIC1_OUT | | | | | 44 | R3 | esai.ESAI_TX4_RX1 | | epit1.EPIT1_OUT | flexcan1.FLEXCAN1_TX | uart2.UART2_TX_DATA | gpio1.GPIO1_IO07 | spdif.SPDIF_LOCK | usb. USB_OTG_HOST_MODE | i2c4.I2C4_SCL | | | 45 | V6 | ecspi1.ECSPI1_MOSI | enet.ENET_TX_DATA3 | audmux.AUD5_TXD | kpp.KEY_ROW0 | uart4.UART4_RX_DATA | gpio4.GPIO4_IO07 | dcic2.DCIC2_OUT | | | | | 46 | R5 | esai.ESAI_TX5_RX0 | xtalosc.
XTALOSC_REF_CLK_32K | epit2.EPIT2_OUT | flexcan1.FLEXCAN1_RX | uart2.UART2_RX_DATA | gpio1.GPIO1_IO08 | spdif.SPDIF_SR_CLK | usb.
USB_OTG_PWR_CTL_WAKE | i2c4.I2C4_SDA | | | 48 | W6 | ecspi1.ECSPI1_SS1 | enet.ENET_RX_DATA2 | flexcan1.FLEXCAN1_TX | kpp.KEY_COL2 | enet.ENET_MDC | gpio4.GPIO4_IO10 | usb.
USB_H1_PWR_CTL_WAKE | | | | | 50 | G23 | eim.EIM_DATA28 | i2c1.I2C1_SDA | ecspi4.ECSPI4_MOSI | ipu1.IPU1_CSI1_DATA12 | uart2.UART2_CTS_B | gpio3.GPIO3_IO28 | ipu1.IPU1_EXT_TRIG | ipu1.IPU1_DI0_PIN13 | epdc.EPDC_SDOED | | | 51 | J19 | eim.EIM_DATA29 | ipu1.IPU1_DI1_PIN15 | ecspi4.ECSPI4_SS0 | | uart2.UART2_RTS_B | gpio3.GPIO3_IO29 | ipu1.IPU1_CSI1_VSYNC | ipu1.IPU1_DI0_PIN14 | epdc.EPDC_SDOE | | | 52 | E24 | eim.EIM_DATA26 | ipu1.IPU1_DI1_PIN11 | ipu1.IPU1_CSI0_DATA01 | ipu1.IPU1_CSI1_DATA14 | uart2.UART2_TX_DATA | gpio3.GPIO3_IO26 | ipu1.IPU1_SISG2 | ipu1.IPU1_DISP1_DATA22 | epdc.EPDC_SDCE8 | | | 53 | E25 | eim.EIM_DATA27 | ipu1.IPU1_DI1_PIN13 | ipu1.IPU1_CSI0_DATA00 | ipu1.IPU1_CSI1_DATA13 | uart2.UART2_RX_DATA | gpio3.GPIO3_IO27 | ipu1.IPU1_SISG3 | ipu1.IPU1_DISP1_DATA23 | epdc.EPDC_DATA11 | | | 54 | G22 | eim.EIM_DATA25 | ecspi4.ECSPI4_SS3 | uart3.UART3_RX_DATA | ecspi1.ECSPI1_SS3 | ecspi2.ECSPI2_SS3 | gpio3.GPIO3_IO25 | audmux.AUD5_RXC | uart1.UART1_DSR_B | epdc.EPDC_SDCE7 | | | 55 | D25 | eim.EIM_DATA23 | ipu1.IPU1_DI0_D0_CS | uart3.UART3_CTS_B | uart1.UART1_DCD_B | ipu1.IPU1_CSI1_DATA_EN | gpio3.GPIO3_IO23 | ipu1.IPU1_DI1_PIN02 | ipu1.IPU1_DI1_PIN14 | epdc.EPDC_SDCE0 | eim.EIM_ACLK_FREERUN | | 56 | F22 | eim.EIM_DATA24 | ecspi4.ECSPI4_SS2 | uart3.UART3_TX_DATA | ecspi1.ECSPI1_SS2 | ecspi2.ECSPI2_SS2 | gpio3.GPIO3_IO24 | audmux.AUD5_RXFS | uart1.UART1_DTR_B | | | | Pin | Ball | ALTO MODE | ALT1 MODE | ALT2 MODE | ALT3 MODE | ALT4 MODE | ALT5 MODE | ALT6 MODE | ALT7 MODE | ALT8 MODE | ALT9 MODE | |-----|------|-----------------------|--------------------------|---------------------|-----------------------|----------------------|------------------|---------------------|--------------------|------------------|-----------| | 57 | F23 | eim.EIM_EB3 | ecspi4.ECSPI4_RDY | uart3.UART3_RTS_B | uart1.UART1_RI_B | ipu1.IPU1_CSI1_HSYNC | gpio2.GPIO2_IO31 | ipu1.IPU1_DI1_PIN03 | src.SRC_BOOT_CFG31 | | | | 60 | C21 | usdhc2.SD2_CLK | | kpp.KEY_COL5 | audmux.AUD4_RXFS | | gpio1.GPIO1_IO10 | | | | | | 61 | A23 | usdhc2.SD2_DATA2 | | eim.EIM_CS3 | audmux.AUD4_TXD | kpp.KEY_ROW6 | gpio1.GPIO1_IO13 | | | | | | 62 | A22 | usdhc2.SD2_DATA0 | | | audmux.AUD4_RXD | kpp.KEY_ROW7 | gpio1.GPIO1_IO15 | dcic2.DCIC2_OUT | | | | | 63 | E20 | usdhc2.SD2_DATA1 | | eim.EIM_CS2 | audmux.AUD4_TXFS | kpp.KEY_COL7 | gpio1.GPIO1_IO14 | | | | | | 64 | F19 | usdhc2.SD2_CMD | | kpp.KEY_ROW5 | audmux.AUD4_RXC | | gpio1.GPIO1_IO11 | | | | | | 65 | B22 | usdhc2.SD2_DATA3 | | kpp.KEY_COL6 | audmux.AUD4_TXC | | gpio1.GPIO1_IO12 | | | | | | 68 | T2 | esai.ESAI_RX_FS | wdog1.WDOG1_B | kpp.KEY_COL6 | ccm.CCM_REF_EN_B | pwm1.PWM1_OUT | gpio1.GPIO1_IO09 | usdhc1.SD1_WP | | | | | 69 | B19 | | usdhc4.SD4_DATA1 | pwm3.PWM3_OUT | | | gpio2.GPIO2_IO09 | | | | | | 71 | T1 | esai.ESAI_TX_FS | | kpp.KEY_ROW6 | | | gpio1.GPIO1_IO02 | usdhc2.SD2_WP | mlb.MLB_DATA | | | | 72 | T4 | esai.ESAI_RX_CLK | wdog2.WDOG2_B | kpp.KEY_ROW5 | usb.USB_OTG_ID | pwm2.PWM2_OUT | gpio1.GPIO1_IO01 | usdhc1.SD1_CD_B | | | | | 73 | A20 | | usdhc4.SD4_DATA3 | | | | gpio2.GPIO2_IO11 | | | epdc.EPDC_SDCE6 | | | 75 | H20 | eim.EIM_DATA21 | ecspi4.ECSPI4_SCLK | ipu1.IPU1_DI0_PIN17 | ipu1.IPU1_CSI1_DATA11 | usb.USB_OTG_OC | gpio3.GPIO3_IO21 | i2c1.l2C1_SCL | spdif.SPDIF_IN | epdc.EPDC_SDOEZ | | | 77 | E23 | eim.EIM_DATA22 | ecspi4.ECSPI4_MISO | ipu1.IPU1_DI0_PIN01 | ipu1.IPU1_CSI1_DATA10 | usb.USB_OTG_PWR | gpio3.GPIO3_IO22 | spdif.SPDIF_OUT | | | | | 79 | J20 | eim.EIM_DATA30 | ipu1.IPU1_DISP1_DATA21 | ipu1.IPU1_DI0_PIN11 | ipu1.IPU1_CSI0_DATA03 | uart3.UART3_CTS_B | gpio3.GPIO3_IO30 | usb.USB_H1_OC | | | | | 80 | T6 | flexcan2.FLEXCAN2_TX | ipu1.IPU1_SISG4 | usb.USB_OTG_OC | kpp.KEY_COL4 | uart5.UART5_RTS_B | gpio4.GPIO4_IO14 | | | | | | 81 | P4 | ipu1.IPU1_CSI0_HSYNC | | | ccm.CCM_CLKO1 | | gpio5.GPIO5_IO19 | | arm.ARM_TRACE_CTL | | | | 82 | V5 | flexcan2.FLEXCAN2_RX | ipu1.IPU1_SISG5 | usb.USB_OTG_PWR | kpp.KEY_ROW4 | uart5.UART5_CTS_B | gpio4.GPIO4_IO15 | | | | | | 83 | М3 | ipu1.IPU1_CSI0_DATA11 | audmux.AUD3_RXFS | ecspi2.ECSPI2_SS0 | uart1.UART1_RX_DATA | | gpio5.GPIO5_IO29 | | arm.ARM_TRACE08 | | | | 84 | G20 | eim.EIM_DATA20 | ecspi4.ECSPI4_SS0 | ipu1.IPU1_DI0_PIN16 | ipu1.IPU1_CSI1_DATA15 | uart1.UART1_RTS_B | gpio3.GPIO3_IO20 | epit2.EPIT2_OUT | | epdc.EPDC_DATA12 | | | 85 | M1 | ipu1.IPU1_CSI0_DATA10 | audmux.AUD3_RXC | ecspi2.ECSPI2_MISO | uart1.UART1_TX_DATA | | gpio5.GPIO5_IO28 | | arm.ARM_TRACE07 | | | | 86 | G21 | eim.EIM_DATA19 | ecspi1.ECSPI1_SS1 | ipu1.IPU1_DI0_PIN08 | ipu1.IPU1_CSI1_DATA16 | uart1.UART1_CTS_B | gpio3.GPIO3_IO19 | epit1.EPIT1_OUT | | | | | 87 | N6 | ipu1.IPU1_CSI0_DATA08 | eim.EIM_DATA06 | ecspi2.ECSPI2_SCLK | kpp.KEY_COL7 | i2c1.I2C1_SDA | gpio5.GPIO5_IO26 | | arm.ARM_TRACE05 | | | | 88 | N5 |
ipu1.IPU1_CSI0_DATA09 | eim.EIM_DATA07 | ecspi2.ECSPI2_MOSI | kpp.KEY_ROW7 | i2c1.I2C1_SCL | gpio5.GPIO5_IO27 | | arm.ARM_TRACE06 | | | | 90 | R2 | esai.ESAI_TX3_RX2 | enet.ENET_1588_EVENT2_IN | enet.ENET_REF_CLK | usdhc1.SD1_LCTL | spdif.SPDIF_IN | gpio7.GPIO7_IO11 | i2c3.I2C3_SDA | sjc.JTAG_DE_B | | | | 92 | R4 | esai.ESAI_TX2_RX3 | | kpp.KEY_ROW7 | ccm.CCM_CLKO1 | | gpio1.GPIO1_IO05 | i2c3.I2C3_SCL | arm.ARM_EVENTI | | | | 94 | R6 | esai.ESAI_TX_HF_CLK | | kpp.KEY_COL7 | | | gpio1.GPIO1_IO04 | usdhc2.SD2_CD_B | | | | | Pin | Ball | ALTO MODE | ALT1 MODE | ALT2 MODE | ALT3 MODE | ALT4 MODE | ALT5 MODE | ALT6 MODE | ALT7 MODE | ALT8 MODE | ALT9 MODE | |-----|------|------------------------|----------------|-----------|---------------------|-----------|------------------|-----------|-------------------|--------------------|-----------| | 96 | L6 | ipu1.IPU1_CSI0_DATA19 | eim.EIM_DATA15 | | uart5.UART5_CTS_B | | gpio6.GPIO6_IO05 | | | | | | 113 | М6 | ipu1.IPU1_CSI0_DATA18 | eim.EIM_DATA14 | | uart5.UART5_RTS_B | | gpio6.GPIO6_IO04 | | arm.ARM_TRACE15 | | | | 115 | M5 | ipu1.IPU1_CSI0_DATA15 | eim.EIM_DATA11 | | uart5.UART5_RX_DATA | | gpio6.GPIO6_IO01 | | arm.ARM_TRACE12 | | | | 117 | L3 | ipu1.IPU1_CSI0_DATA17 | eim.EIM_DATA13 | | uart4.UART4_CTS_B | | gpio6.GPIO6_IO03 | | arm.ARM_TRACE14 | | | | 120 | N2 | ipu1.IPU1_CSI0_VSYNC | eim.EIM_DATA01 | | | | gpio5.GPIO5_IO21 | | arm.ARM_TRACE00 | | | | 122 | Р3 | ipu1.IPU1_CSI0_DATA_EN | eim.EIM_DATA00 | | | | gpio5.GPIO5_IO20 | | arm.ARM_TRACE_CLK | | | | 124 | M2 | ipu1.IPU1_CSI0_DATA12 | eim.EIM_DATA08 | | uart4.UART4_TX_DATA | | gpio5.GPIO5_IO30 | | arm.ARM_TRACE09 | | | | 171 | M4 | ipu1.IPU1_CSI0_DATA14 | eim.EIM_DATA10 | | uart5.UART5_TX_DATA | | gpio6.GPIO6_IO00 | | arm.ARM_TRACE11 | | | | 173 | L4 | ipu1.IPU1_CSI0_DATA16 | eim.EIM_DATA12 | | uart4.UART4_RTS_B | | gpio6.GPIO6_IO02 | | arm.ARM_TRACE13 | | | | 175 | L1 | ipu1.IPU1_CSI0_DATA13 | eim.EIM_DATA09 | | uart4.UART4_RX_DATA | | gpio5.GPIO5_IO31 | | arm.ARM_TRACE10 | | | | 177 | P1 | ipu1.IPU1_CSI0_PIXCLK | | | | | gpio5.GPIO5_IO18 | | arm.ARM_EVENTO | epdc.EPDC_PWR_WAKE | | # 4. SOM's interfaces # 4.1. Display Interfaces #### 4.1.2 Overview The VAR-SOM-SOLO/DUAL consists of the following display interfaces: - Two LVDS channels, driven by the LDB; pixel clock up to 170 MHz - One HDMI port (ver. 1.4) driven by the HDMI transmitter: Pixel clock up to 266 MHz (gated by the IPU capabilities) - One MIPI/DSI port driven by the MIPI/DSI transmitter; two data lanes @ 1 GHz - Each IPU has two display ports. Up to four external ports can be active at any given time (additional asynchronous data flows can be sent though the parallel ports and the MIPI/DSI port). #### 4.1.3 DSI VAR-SOM-SOLO/DUAL MIPI DSI Host Controller supports up to 2 D-PHY data lanes: - Bidirectional communication and escape mode support through the data lane - Programmable display resolutions, from 160 x 120(QQVGA) to 1024 x 768(XVGA) - Multiple peripheral support capability, configurable virtual channels - Video mode pixel formats, 16 bpp (5,6,5 RGB), 18 bpp (6,6,6,RGB) packed, 18 bpp (6,6,6,RGB) loosely, 24 bpp (8,8,8,RGB) #### DSI signals: | Signal | Pin# | Туре | Description | |-----------|------|------|----------------------------------| | DSI_CLK0M | 142 | ODS | Negative DSI clock differential | | DSI_CLKOP | 140 | ODS | Positive DSI clock differential | | DSI_D0M | 141 | ODS | Negative DSI data 0 differential | | DSI_DOP | 143 | ODS | Positive DSI data 0 differential | | DSI_D1M | 145 | ODS | Negative DSI data 1 differential | | DSI_D1P | 147 | ODS | Positive DSI data 1 differential | #### 4.1.4 HDMI The HDMI module provides an HDMI standard interface port to an HDMI 1.4 compliant display #### **HDMI Signals:** | Signal | Pin# | Туре | Description | |-------------|------|------|-----------------------------------| | HDMI_CLKM | 150 | ODS | Negative HDMI clock differential | | HDMI_CLKP | 152 | ODS | Positive HDMI clock differential | | HDMI_D0M | 157 | ODS | Negative HDMI data 0 differential | | HDMI_D0P | 155 | ODS | Positive HDMI data 0 differential | | HDMI_D1M | 148 | ODS | Negative HDMI data 1 differential | | HDMI_D1P | 146 | ODS | Positive HDMI data 1 differential | | HDMI_D2M | 153 | ODS | Negative HDMI data 2 differential | | HDMI_D2P | 151 | ODS | Positive HDMI data 2 differential | | HDMI_DDCCEC | 156 | 10 | One wire bidirectional CEC | | HDMI_HPD | 154 | I | Hot plug detect | #### 4.1.5 LVDS Interface LVDS Display Bridge (LDB) will be used to connect the IPU (Image Processing Unit) to the External LVDS display interface. There are 2 LVDS channels. These outputs are used to communicate RGB data and controls to external LCD displays. The LVDS ports may be used as follows: - Single channel output - Dual channel output (one input source, two channel outputs for two displays) - Split channel output (one input source, split to two channels on output) - Separate two channel output (two input sources from IPU) #### LVDS0 Signals: | Signal | Pin# | Туре | Description | |-------------|------|------|------------------------------| | LVDS0_TX0_N | 161 | ODS | Negative data 0 differential | | LVDS0_TX0_P | 163 | ODS | Positive data 0 differential | | LVDS0_TX1_N | 160 | ODS | Negative data 1 differential | | LVDS0_TX1_P | 162 | ODS | Positive data 1 differential | | LVDS0_TX2_N | 164 | ODS | Negative data 2 differential | | LVDS0_TX2_P | 166 | ODS | Positive data 2 differential | | LVDS0_TX3_N | 165 | ODS | Negative data 3 differential | | LVDS0_TX3_P | 167 | ODS | Positive data 3 differential | | LVDS0_CLK_N | 168 | ODS | Negative clock differential | | LVDS0_CLK_P | 170 | ODS | Positive clock differential | Table 4-1 LVDS Signals #### LVDS1 Signals: | Signal | Pin# | Туре | Description | |-------------|------|------|------------------------------| | LVDS1_TX0_N | 184 | ODS | Negative data 0 differential | | LVDS1_TX0_P | 186 | ODS | Positive data 0 differential | | LVDS1_TX1_N | 188 | ODS | Negative data 1 differential | | LVDS1_TX1_P | 190 | ODS | Positive data 1 differential | | LVDS1_TX2_N | 192 | ODS | Negative data 2 differential | | LVDS1_TX2_P | 194 | ODS | Positive data 2 differential | | LVDS1_TX3_N | 183 | ODS | Negative data 3 differential | | LVDS1_TX3_P | 181 | ODS | Positive data 3 differential | | LVDS1_CLK_N | 180 | ODS | Negative clock differential | | LVDS1_CLK_P | 182 | ODS | Positive clock differential | #### 4.2. Touch Panel The VAR-SOM-SOLO/DUAL features a 4-wire resistive touch panel interface: - Compatible with 4-wire resistive touch screens - Pen-detection and nIRQ generation - Supports several schemes of measurement, averaging to filter noise #### **Touch-screen Controller Signals:** | Signal | Pin# | Туре | Description | |--------|------|------|----------------------| | TS_X- | 187 | Al | Touch screen X minus | | TS_Y- | 193 | Al | Touch screen Y minus | | TS_X+ | 189 | Al | Touch screen X plus | | TS_Y+ | 191 | Al | Touch screen Y plus | #### 4.3. Camera Interfaces #### 4.3.1. MIPI CSI-2 The CSI-2 Host Controller is a digital core that implements all protocol functions defined in the MIPI CSI-2 specification, providing an interface between the system and the MIPI D-PHY, allowing communication with an MIPI CSI-2 compliant camera sensor. The MIPI CSI-2 host controller supports the following features: - Compliance with MIPI Alliance standard for camera serial interface 2 (CSI-2), version 1.00 29th November, 2005 - Optional support for Camera Control Interface (CCI) through the use of DesignWare Core (DW_apb_i2c) - Interface with MIPI D-PHY following PHY Protocol Interface (PPI), as defined in MIPI Alliance Specification for D-PHY, version 1.00.00 14th May, 2009 - Supports up to 2 D-PHY Rx data lanes - · Dynamically configurable multi-lane merging - Long and short packet decoding - Timing accurate signaling of frame and line synchronization packets - Support for several frame formats such as: - General frame or digital interlaced video with or without accurate sync timing - Data type (packet or frame level) and virtual channel interleaving - 32-bit image data interface delivering data formatted as recommended in CSI-2 specification - Supports all primary and secondary data formats: - RGB, YUV and RAW color space definitions - From 24-bit down to 6-bit per pixel - Generic or user-defined byte-based data types - Error detection and correction: - PHY level - Packet level - Line level - Frame level #### MIPI CSI-2 signals: | Signal | Pin# | Туре | Description | |-----------|------|------|------------------------------------| | CSI_CLK0M | 137 | IDS | Negative CSI-2 clock differential | | CSI_CLKOP | 135 | IDS | Positive CSI-2 clock differential | | CSI_DOM | 121 | IDS | Negative CSI-2 data 0 differential | | CSI_DOP | 119 | IDS | Positive CSI-2 data 0 differential | | CSI_D1M | 123 | IDS | Negative CSI-2 data 1 differential | | CSI_D1P | 125 | IDS | Positive CSI-2 data 1 differential | #### 4.3.2. Parallel CSIx Based on i.MX6 IPU, the VAR-SOM-SOLO/DUAL supports a camera port controlled by a CSI sub-block, providing a connection to image sensors and related devices. CSIO can implement 12bit CSI interface. # CSIO Signals on 200 pin SO-DIMM connector: | Signal | Pin# | Туре | Description | |--------------|------|------|------------------------| | CSIO_DAT8 | 87 | 10 | Camera data line | | CSI0_DAT9 | 88 | Ю | Camera data line | | CSIO_DAT10 | 85 | Ю | Camera data line | | CSIO_DAT11 | 83 | Ю | Camera data line | | CSIO_DAT12 | 124 | 10 | Camera data line | | CSIO_DAT13 | 175 | Ю | Camera data line | | CSIO_DAT14 | 171 | 10 | Camera data line | | CSI0_DAT15 | 115 | Ю | Camera data line | | CSIO_DAT16 | 173 | Ю | Camera data line | | CSI0_DAT17 | 117 | Ю | Camera data line | | CSIO_DAT18 | 113 | 10 | Camera data line | | CSI0_DAT19 | 96 | Ю | Camera data line | | CSIO_DATA_EN | 122 | 10 | Camera data enable | | CSI0_HSYNCH | 81 | Ю | Camera horizontal sync | | CSI0_PIXCLK | 177 | 10 | Camera pixel clock | | CSI0_VSYNC
| 120 | Ю | Camera vertical sync | ### 4.4. Gigabit Ethernet #### Gigabit Ethernet Features: The Ethernet Media Access Controller (MAC) is designed to support 10/100/1000 Mbps Ethernet/IEEE 802.3 networks. An external Gigabit magnetics is required to complete the interface to the media. The i.MX6 processor also consists of HW assist for IEEE1588 standard. See the IEEE1588 section for more details. #### Gigabit Ethernet Magnetics: In order to utilize the VAR-SOM-SOLO/DUAL Gigabit Ethernet interface, compatible magnetics should be used on the carrier board. | Vendor | Part Number | Package | Cores | Configuration | |--------|-------------|-----------------|-------|---------------| | Pulse | H5007NL | Transformer | 8 | Auto-MDX | | TDK | TLA-7T101LF | Transformer | 8 | Auto-MDX | | Pulse | J0G-0009NL | Integrated RJ45 | 8 | Auto-MDX | #### Gigabit Ethernet Signals: | Signal | Pin# | Туре | Description | | |--------|------|------|------------------------------|--| | MDI_A+ | 3 | DS | Positive A differential lane | | | MDI_A- | 5 | DS | Negative A differential lane | | | MDI_B+ | 9 | DS | Positive B differential lane | | | MDI_B- | 11 | DS | Negative B differential lane | | | MDI_C+ | 4 | DS | Positive C differential lane | | | MDI_C- | 6 | DS | Negative C differential lane | | | MDI_D+ | 10 | DS | Positive D differential lane | | | MDI_D- | 12 | DS | Negative D differential lane | | #### 4.5. Wi-Fi & Bluetooth The VAR-SOM-SOLO/DUAL contains TI's WL183xMOD WiLink, a high performance 2.4/5 GHz IEEE 802.11 a/b/g/n Bluetooth 5.1/BLE with CSA2 support radio module, with optional Dual Band and MIMO support. The modules support improved performance over WiFi in bit rates reaching 100Mbps (UDP) and 80Mbps (TCP). The module realizes the necessary PHY/MAC layers to support WLAN applications in conjunction with a host processor over a SDIO interface. The module also provides a Bluetooth platform through the HCI transport layer. Both WLAN and Bluetooth share the same antenna port. - IEEE 802.11 b,g,n or Dual Band 2.4/5GHz 802.11 a/b/g/n with optional MIMO - Bluetooth 5.1/BLE with CSA2 support - U.FL connectors for external antennas - Integrated band-pass filter - Operating Temperature Range: Dual Band 2.4/5GHz Modules: -40 to +85 2.4GHz Modules: -20 to +70 WL1831 – Populate ANT1 only #### 4.6. USB Host 2.0 The USB controller block provides high performance USB functionality that conforms to the USB 2.0 specification. #### **USB Host1 Signals:** | Signal | Pin# | Туре | Description | |-------------|------|------|---| | USB_HOST_DP | 110 | IODS | Positive USB host data | | USB_HOST_DN | 108 | IODS | Negative USB host data | | USB_H1_VBUS | 104 | 1 | USB 2.0 VBUS indicator (5V) | | USB_H1_OC | 79 | 1 | USB host over current indicator , Active low 3.3v digital | #### 4.7. USB 2.0 OTG #### USB 2.0 On-the-go Features: High-speed OTG core - HS/FS/LS UTMI compliant interface - High speed, full speed and low speed operation in host mode (with UTMI transceiver) - High speed, and full speed operation in peripheral mode (with UTMI transceiver) - Hardware support for OTG signaling, session request protocol, and host negotiation protocol - Up to 8 bidirectional endpoints - Integrated HS USB PHY #### **OTG Signals:** | Signal | Pin# | Туре | Description | |--------------|------|------|---| | USB_OTG_DN | 114 | IODS | Negative USB OTG data | | USB_OTG_DP | 116 | IODS | Positive USB OTG data | | USB_OTG_VBUS | 106 | 1 | USB 2.0 OTG VBUS indicator (5V) | | USB_OTG_ID | 72 | I | USB OTG host/client ID
Low : Host mode
Float: Client mode | ### 4.8. MMC/SD/SDIO MX6 MMC interface features: - Fully compliant with MMC command/response sets and physical layer as defined in the Multimedia Card System specification v4.2/4.3/4.4/.41, including high-capacity (size > 2 GB) cards HC MMC. - Fully compliant with SD command/response sets and physical layer as defined in the SD Memory Card specifications v2.0, including high-capacity SDHC and extended-capacity SDXC cards. - Fully compliant with SDIO command/response sets and interrupt/read-wait mode as defined in the SDIO Card specification, Part E1 v1.10 - Fully compliant with SD Card specification, Part A2, SD Host Controller Standard specification v2.00 - 1-bit or 4-bit transfer mode specifications for MMC/SD/SDIO cards up to HS mode (25MB/s max) #### SDMMC2 Signals: | Signal | Pin# | Туре | Description | |-----------|------|------|----------------------------------| | SD2_CLK | 60 | 0 | Clock for MMC/SD/SDIO card | | SD2_CMD | 64 | 10 | CMD line connect to card | | | | 10 | DAT0 line in all modes | | SD2_DATA0 | 62 | | (also used to detect busy state) | | SD2_DATA1 | 63 | 10 | DAT1 line-in | | SD2_DATA2 | 61 | 10 | DAT2 line | | SD2_DATA3 | 65 | IO | DAT3 line-in | #### 4.9. Audio The VAR-SOM-SOLO/DUAL features three audio interfaces: - TLV320AIC3106 Audio codec interfaces - 1. Analog outputs / inputs: - stereo line-in - Stereo HP out - 2. Digital microphone input - SSI Digital audio interface - S/PDIF in/out Analog audio signals are featured by the on-SOM TLV320AIC3106 audio codec. Refer to the data sheet for detailed electrical characteristics of the relevant interfaces http://www.ti.com/product/tlv320aic3106. #### Analog Signals: | Signal | Pin# | Туре | Description | |------------|------|------|------------------------| | HP_LOUT | 198 | AO | Headphones out - left | | HP_ROUT | 200 | AO | Headphones out - right | | LINEIN1_LP | 197 | Al | Line-in - Right | | LINEIN1_RP | 199 | Al | Line-in - Left | ### Digital AUDMUX: Key features of the block include: - Full 6-wire SSI interfaces for asynchronous receive and transmit - Configurable 4-wire (synchronous) or 6-wire (asynchronous) peripheral interfaces - Independent Tx/Rx frame sync and clock direction selection for host or peripheral - Each host interface's capability to connect to any other host or peripheral interface in a point-to-point or point-to-multipoint (network mode) - Transmit and receive data switching to support external network mode #### **AUDMUX4 Signals:** | Signal | Pin# | Туре | Description | |--------------|------|------|---| | AUDMUX4_TXD | 26 | 10 | Transmit data from pin | | AUDMUX4_RXD | 21 | 10 | Receive data at pin | | AUDMUX4_TXC | 25 | 10 | Transmit clock input/output at pin | | AUDMUX4_RXC | 22 | 10 | Receive clock input/output at pin | | AUDMUX4_TXFS | 24 | 10 | Transmit frame sync input/output at pin | | AUDMUX4_RXFS | 23 | 10 | Receive frame sync input/output at pin | #### S/PDIF (Sony Phillips Digital Interface) In/Out: S/PDIF is a standard audio file transfer format, developed jointly by the Sony and Phillips corporations. #### SPIDF Signals: | Signal | Pin# | Туре | Description | |-------------|-----------|------|-------------| | SPDIFIN | 75 | | In | | SPDIFOUT | 77 | | Out | | Spdif.plock | 44(MUXED) | | | | Spdif.srclk | 46(MUXED) | | Clock | ### 4.10. UART Interfaces All 5 UART interfaces are supported, refer to Table 3.2 for pin mux configurations of the UART interface. #### **UART Features:** - High-speed TIA/EIA-232-F compatible, up to 5.0 Mbit/s - Serial IR interface low-speed, IrDA-compatible (up to 115.2 Kbit/s) - 9-bit or Multidrop mode (RS-485) support (automatic slave address detection) - 7 or 8 data bits for RS-232 characters, or 9 bit RS-485 format - 1 or 2 stop bits - Programmable parity (even, odd, and no parity) - Hardware flow control support for request to send (RTS_B) and clear to send (CTS_B) signals - RS-485 driver direction control via CTS_B signal - Auto baud rate detection (up to 115.2 Kbit/s) - DCE/DTE capability - Two independent, 32-entry FIFOs for transmit and receive #### **UART1 Signals:** | Signal | Pin# | Туре | Description | |-----------|------|------|--------------------------| | UART1_CTS | 86 | 0 | UART HW flow control RTS | | UART1_RTS | 84 | T | UART HW flow control CTS | | UART1_TX | 85 | 0 | UART transmit | | UART1_RX | 83 | T | UART receive | Note: UART1 is used as default boot debug port. ### **UART2 Signals:** | Signal | Pin# | Туре | Description | |-----------|------|------|--------------------------| | UART2_TXD | 44 | 0 | UART transmit | | | 52 | | | | UART2_RXD | 46 | 1 | UART receive | | | 53 | | | | UART2_RTS | 51* | T | UART HW flow control RTS | | UART2_CTS | 50* | 0 | UART HW flow control CTS | #### Note: UART2 is used for by on SOM Bluetooth. Interface cannot be used if using Bluetooth. Pins marked with * are shared with WiFi/Bluetooth module. Pins can't be used and mode can't be altered if the WiFi/Bluetooth module is assembled. #### **UART3 Signals:** | Signal | Pin# | Туре | Description | |--------------------------|------|------|--------------------------| | UART3_TXD | 56 | 0 | UART transmit | | UART3_RXD | 54 | 1 | UART receive | | UART3_RTS ^[1] | 57 | T | UART HW flow control RTS | | UART3_CTS | 55 | 0 | UART HW flow control CTS | | | 79 | | | [1] UART3 RTS pin is being latched at boot to determine boot sequence. Use with OE# buffer, and enable only after SOM is powered-up. Use reference schematics as example. #### **UART4 Signals:** | Signal | Pin # | Туре | Description | |-----------|-------|------|--------------------------| | UART4_TXD | 43 | 0 | UART transmit | | | 124 | | | | UART4_RXD | 45 | 1 | UART receive | | | 175 | | | | UART4_RTS | 173 | 1 | UART HW flow control RTS | | UART4_CTS | 117 | 0 | UART HW flow control CTS | ### **UART5 Signals:** | Signal | Pin# | Туре | Description | |-----------|-----------|------|--------------------------| | UART5_TXD | 41
171 | 0 | UART transmit | | UART5_RXD | 39
115 | I | UART receive | | UART5_RTS | 80
113 | I | UART HW flow control RTS | | UART5_CTS | 82
96 | 0 | UART HW flow control CTS | ### 4.11. Flexible Controller Area Network (FLEXCAN) The CAN protocol was primarily, but not
exclusively, designed to be used as a vehicle serial data bus, meeting the specific requirements of this field: Real-time processing, reliable operation in the Electromagnetic Interference (EMI) environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module is a full implementation of the CAN protocol specification, version 2.0 B, which supports both standard and extended message frames. #### **CAN1 Signals:** | Signal | Pin# | Туре | Description | |---------|------|------|------------------| | CAN1_RX | 46 | I | CAN BUS receive | | CAN1_TX | 44 | 0 | CAN BUS transmit | #### **CAN2 Signals:** | Signal | Pin# | Туре | Description | |---------|------|------|------------------| | CAN2_TX | 80 | 0 | CAN BUS receive | | CAN2_RX | 82 | I | CAN BUS transmit | #### **Signal Descriptions** <u>CAN Rx:</u> The receive pin from the CAN bus transceiver. Dominant state is represented by logic level '0'. Recessive state is represented by logic level '1'. <u>CAN Tx:</u> The transmit pin to the CAN bus transceiver. Dominant state is represented by logic level '0'. Recessive state is represented by logic level '1'. #### 4.12. SPI The Enhanced Configurable Serial Peripheral Interface (ECSPI) is a full-duplex, synchronous 4-wire serial communication block. The ECSPI contains a 64×32 receive buffer (RXFIFO) and a 64×32 transmit buffer (TXFIFO). With data FIFOs, the ECSPI allows rapid data communication with fewer software interruptions. #### 4.12.1. eCSPI Key Features: - Full-duplex synchronous serial interface - Master/slave configurable - Four chip select (SS) signals to support multiple peripherals - Transfer continuation function allows unlimited length data transfers - 32-bit wide by 64-entry FIFO for both transmitting and receiving data - 32-bit wide by 16-entry FIFO for HT message data - Polarity and phase of the chip select (SS) and SPI clock (SCLK) are configurable - Direct Memory Access (DMA) support - Max operation frequency up to the reference clock frequency # ECSPI1 Signals: | Signal | Pin # | Туре | Description | |------------|---------|------|---------------------------| | cSPI1_CLK | 25, 43 | Ю | SPI1 clock | | cSPI1_MOSI | 26, 45 | Ю | SPI1 MOSI signal | | cSPI1_MISO | 24, 41 | Ю | SPI1 SOMI signal | | cSPI1_CS0 | 39, 21 | Ю | SPI1 chip select 0 signal | | cSPI1_CS1 | 48, 86 | Ю | SPI1 chip select 1 signal | | cSPI1_CS2 | 56 | Ю | SPI1 chip select 2 signal | | cSPI1_CS3 | 54, 174 | Ю | SPI1 chip select 3 signal | ## ECSPI2 Signals: | Signal | Pin # | Туре | Description | |------------|--------|------|---------------------------| | cSPI2_CLK | 22, 87 | 10 | SPI2 clock | | cSPI2_MOSI | 88 | Ю | SPI2 MOSI signal | | cSPI2_MISO | 85 | 10 | SPI2 SOMI signal | | cSPI2_CS0 | 23, 83 | 10 | SPI2 Chip select 0 signal | | cSPI2_CS2 | 56 | 10 | SPI2 Chip select 2 signal | | cSPI2_CS3 | 54 | 10 | SPI2 Chip select 3 signal | # ECSPI4 Signals: | Signal | Pin# | Туре | Description | |------------|--------|------|---------------------------| | cSPI4_CLK | 75 | IO | SPI4 clock | | cSPI4_MOSI | 50 | IO | SPI4 MOSI signal | | cSPI4_MISO | 77 | IO | SPI4 SOMI signal | | cSPI4_CS0 | 51, 84 | IO | SPI4 Chip select 0 signal | | cSPI4_CS2 | 56 | IO | SPI4 Chip select 2 signal | | cSPI4_CS3 | 54 | IO | SPI4 Chip select 3 signal | | cSPI4_RDY | 57 | IO | SPI4 ready signal | #### 4.13. PCle VAR-SOM-SOLO/DUAL PCI Express functionality has the following parts: PCI Express includes the following cores: - PCI Express Dual Mode (DM) core - PCI Express Root Complex (RC) core - PCI Express Endpoint (EP) core #### PCI Express 2.0 PHY: - PCIe 2.0 PHY is a complete mixed-signal semiconductor intellectual property (IP) solution, designed for single-chip integration into computer applications - The PCIe 2.0 PHY supports both the 5 Gbps data rate of the PCI Express Gen 2.0 specifications as well as being backwards compatible to the 2.5Gb/s Gen 1.1 specification #### **PCIE Signals:** | Signal | Pin# | Туре | Description | |----------|------|------|---------------------------------| | PCIE_TXP | 130 | DS | Positive PCI TX differential | | PCIE_TXM | 128 | DS | Negative PCI TX differential | | PCIE_RXP | 134 | DS | Positive PCI RX differential | | PCIE_RXM | 136 | DS | Negative PCI RX differential | | CLK1_P | 102 | DS | Positive PCI clock differential | | CLK1_N | 100 | DS | Negative PCI clock differential | #### 4.14. I²C I2C-1, 2, 3 Interface connectivity peripherals provide serial interface for external devices. Data rates of up to 400 kbps are supported. #### **I2C1** Signals: | Signal | Pin# | Туре | Description | | | |----------|-------|------|---|--|--| | I2C1_SCL | 88,75 | Ю | I2C1 I ² C clock, open drain | | | | I2C1_SDA | 87,50 | Ю | I2C1 I ² C data, open drain | | | #### **I2C2 Signals:** | Signal | Pin# | Туре | Description | | | | |----------|------|------|---|--|--|--| | I2C2_SCL | 174 | Ю | I ² C clock, open drain, internally PU | | | | | I2C2_SDA | 176 | Ю | I ² C data, open drain, internally PU | | | | **Note:** I2C2 interface is used by PMIC, CODEC and EEPROM on-som devices (I2C ADDR =0x1B, 0x8, 0x56 & 0x57). Pin configuration for I2C2 signal can't be changed. #### **I2C3 Signals:** | Signal | Pin# | Туре | Description | | | | |----------|------|------|---|--|--|--| | I2C3_SCL | 92 | Ю | I2C3 I ² C clock, open drain | | | | | I2C3_SDA | 90 | Ю | I2C3 I ² C data, open drain | | | | ### 4.15. General Purpose IOs Most of the SoM's IO pins can be used as GPIOs. See Chapter 3, Table 3.1 and 3.2 for a complete SoM connectors signal list and GPIO multiplexing. # 4.16. General System Control #### 4.16.1. Boot Options Below you can find the MX6 boot options | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | | | |---------------------------------|--------------|-----------|-----------|-----------|-----------|---------------|---------------|--|--| | BT_CFG1_7 | BT_CFG1_6 | BT_CFG1_5 | BT_CFG1_4 | BT_CFG2_6 | BT_CFG2_5 | BT_CFG2_4 | BT_CFG2_3 | | | | | 1XXX = NAND | F Boot | | | | | | | | | | | | | XO = | 1-blt | 01 = SE | 01 = SD2 Boot | | | | | 011X = MMC | eMMC Boot | | X1 = | 4-bit | 10 = SD3 Boot | | | | | | | | | 10 = | 8-bit | 11 = SD4 Boot | | | | | | | | | V0 - | 1-bit | 01 = SD2 Boot | | | | | | 010X = SD/eS | D Boot | | | 4-bit | 10 = SD3 Boot | | | | | | | | | λ1 – | 4-DIL | 11 = SE | 04 Boot | | | | 0011 = Serial ROM (SPINOR) Boot | | | | | | | | | | | 0010 = SATA Boot | | | | | | | | | | The boot-select pin configures the boot sequence of the VAR-SOM-SOLO/DUAL : BOOT CFG = X1X00101 | Pin Name | Pin Number | MX6 BOOT_CFG | Internally pulled | |-----------|------------|--------------|-------------------| | BOOT_SEL0 | 42 | BT_CFG1_7 | Pulled-up 10K | | BOOT_SEL1 | 40 | BT_CFG1_5 | Pulled-down 10K | #### Use cases: BOOT_SEL [1:0] = [0:1] => BOOT_CFG = 11000101 => NAND Boot BOOT_SEL [1:0] = [0:0] => BOOT_CFG = 01000101 => SD2 boot, SD-Card, 4 bit bus BOOT_SEL [1:0] = [1:0] => BOOT_CFG = 01100101 => SD2 boot, eMMC (external, on carrier board),4 bit bus Note: boot from on-SOM eMMC is not possible #### 4.16.2. Reset '0' logic will reset VAR-SOM-SOLO/DUAL A Delay should be added on POR_B to ensure POR_B is released after SOM voltage rails have stabilized. Use a voltage supervisor, see reference schematics. #### 4.16.3. Reference Clock Out VAR-SOM-SOLO/DUAL output clock (CLKO2) is controlled by the i.MX6 CCM module. Please refer to the i.MX6 user manual regarding the configuration option for this clock. # 4.16.4. General System Control Signals | Signal | Pin# | Туре | Description | | |-----------|------|------|-------------------------|--| | CLKO | 29 | 0 | Clock out | | | BOOT_SEL0 | 42 | T | Refer to section 4.19.1 | | | BOOT_SEL1 | 40 | T | Refer to section 4.19.1 | | | POR_B | 98 | T | Hardware reset | | # 4.17. Power ## 4.17.1. Power Supply | Signal | Pin# | Туре | Description | |---------|--|-----------|--| | VIN_3V3 | 32, 34,
36, 38,
103,
105,
107,
109, 111 | Power In | VAR-SOM-SOLO/DUAL Single DC-IN Supply voltage. Voltage range: 3.3 +/- 5% | | 3V3_PER | 49 | Power Out | 3.3 V output, up to 200 mA | ### 4.17.2. Ground | Signal | Pin# | Туре | Description | |--------|---|-------|------------------| | GND | 13, 14, 19,
27, 28, 31,
33, 35, 37,
47, 58, 59,
66, 67, 76,
78, 89, 95,
101, 112,
118, 126,
132, 138,
139, 144,
149, 158,
159, 169,
172, 178,
179, 185 | Power | Digital ground | | AGND | 195,196 | Power | Audio analog GND | # 5. Absolute Maximum Characteristics | Power Supply | Min | Max | Unit | |--------------------------|------|-----|------| | Main Power Supply, DC-IN | -0.3 | 3.5 | V | # 6. Operational Characteristics # 6.1. Power supplies | | Min | Typical | Max | Unit | |--------------------------|-----|---------|-----|------| | Main Power Supply, DC-IN | -5% | 3.3 | +5% | V | # 6.2. Power Consumption #### CPU usage: | Task | SOM VBAT current draw in ma @3.3v | |--------------------------|-----------------------------------| | Idle (~10% CPU) @ 400mhz | 330mA | | FHD Video playback | 650mA | #### Additional peripherals: | <u> </u> | | | | |--|-----------------------------------|--|--| | Task | SOM VBAT current draw in ma @3.3v | | | | WLAN transmission 2.4Ghz 802.11(b/g/n) | ~(460-530)mA | | | | WLAN transmission 5Ghz 802.11(a) | ~540mA | | | | Gbit Ethernet | ~610mA | | | # 7. DC Electrical Characteristics | Parameter | Min | Typical | Max | Unit | | |-----------------|---------------|---------|--------------|------|--| | Digital 3.3V | | | | | | | V _{IH} | 0.7x VIN_3V3 | |
VIN_3V3 | V | | | V _{IL} | 0 | | 0.3x VIN_3V3 | V | | | V _{OH} | VIN_3V3- 0.15 | | | V | | | V _{OL} | | | 0.15 | V | | Table 7-1 DC Electrical Characteristics # 8. Environmental Specifications | | Min | Max | |--|-------------|--------| | Commercial Operating Temperature Range | 0 °C | +70 °C | | Extended Operating Temperature Range | -20 °C | +70 °C | | Industrial Operating Temperature Range | -40 °C | +85 °C | | Storage temperature | -40°C | 85°C | | Relative humidity (operation) | 10% | 90% | | Relative humidity (storage) | 05% | 95% | | Referring MIL-HDBK-217F-2 Parts Count | | | | Reliability Prediction Method Model: | | | | 25Deg Celsius, Class B-1, GM | 374 Khrs > | | | 25Deg Celsius, Class B-1, GF | 823 Khrs > | | | 25Deg Celsius, Class B-1, GB | 2600 Khrs > | | <u>Note:</u> Extended and Industrial Temperature is only based on the operating temperature grade of the SoM components. Customer should consider specific thermal design for the final product based upon the specific environmental and operational conditions. # 9. Mechanical Drawings #### Top View [mm] CAD files are available for download at http://www.variscite.com/ # 10. Legal Notice Variscite Ltd. ("Variscite") products and services are sold subject to Variscite terms and conditions of sale, delivery and payment supplied at the time of order acknowledgement. Variscite warrants performance of its products to the specifications in effect at the date of shipment. Variscite reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant product information from Variscite to verify that their reference is current. Testing and other quality control techniques are utilized to the extent that Variscite deems necessary to support its warranty. Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation. In order to minimize risks associated with customer applications, the customer must use adequate design and operating safeguards to minimize inherent or procedural hazards. Variscite is not liable for applications assistance or customer product design. The customer is solely responsible for its selection and use of Variscite products. Variscite is not liable for such selection or use or for use of any circuitry other than circuitry entirely embodied in a Variscite product. Variscite products are not intended for use in life support systems, appliances, nuclear systems or systems where malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage. Any use of products by the customer for such purposes is at the customer's own risk. Variscite does not grant any license (express or implied) under any patent right, copyright, mask work right or other intellectual property right of Variscite covering or relating to any combination, machine, or process in which its products or services might be or are used. Any provision or publication of any third party's products or services does not constitute Variscite's approval, license, warranty or endorsement thereof. Any third party trademarks contained in this document belong to the respective third party owner. Reproduction of information from Variscite datasheets is permissible only if reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Variscite is not liable for any un-authorized alteration of such information or for any reliance placed thereon. Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in this datasheet or in Variscite's standard terms and conditions of sale, delivery and payment are made, given and/or accepted at that person's own risk. Variscite is not liable for any such representations, warranties or liabilities or for any reliance placed thereon by any person. # 11. Warranty Terms Variscite guarantees hardware products against defects in workmanship and material for a period of one (1) year from the date of shipment. Your sole remedy and Variscite's sole liability shall be for Variscite, at its sole discretion, to either repair or replace the defective hardware product at no charge or to refund the purchase price. Shipment costs in both directions are the responsibility of the customer. This warranty is void if the hardware product has been altered or damaged by accident, misuse or abuse. #### **Disclaimer of Warranty** THIS WARRANTY IS MADE IN LIEU OF ANY OTHER WARRANTY, WHETHER EXPRESSED, OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A SPECIFIC PURPOSE, NON-INFRINGEMENT OR THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION, EXCEPT THE WARRANTY EXPRESSLY STATED HEREIN. THE REMEDIES SET FORTH HEREIN SHALL BE THE SOLE AND EXCLUSIVE REMEDIES OF ANY PURCHASER WITH RESPECT TO ANY DEFECTIVE PRODUCT. #### **Limitation on Liability** UNDER NO CIRCUMSTANCES SHALL VARISCITE BE LIABLE FOR ANY LOSS, DAMAGE OR EXPENSE SUFFERED OR INCURRED WITH RESPECT TO ANY DEFECTIVE PRODUCT. IN NO EVENT SHALL VARISCITE BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES THAT YOU MAY SUFFER DIRECTLY OR INDIRECTLY FROM USE OF ANY PRODUCT. BY ORDERING THE SOM, THE CUSTOMER APPROVES THAT THE VARISCITE SOM, HARDWARE AND SOFTWARE, WAS THOROUGHLY TESTED AND HAS MET THE CUSTOMER'S REQUIREMETS AND SPECIFICATIONS. # 12. Contact Information # Headquarters: Variscite Ltd. 4 Hamelacha St. Lod P.O.B 1121 Airport City, 70100 ISRAEL Tel: +972 (9) 9562910 Fax: +972 (9) 9589477 Sales: sales@variscite.com Technical Support: support@variscite.com Corporate Website: www.variscite.com